CBO Systematic Study Status Report

(addendum)

Eric Schmidt BNL/SULI

E821

Basic physics equation describing the rate of detected positrons:

$$dN/dt = N_0 e(-t/\gamma \tau_{\mu})[1 + A\cos(\omega_a t + \phi)]$$

$$N_0 \rightarrow N_0 [1 + A_N \exp(-t/\tau_{CBO}) \cos(\omega_{CBO} t + \phi_N)]$$

$$A \rightarrow A [1 + A_A exp(-t/\tau_{CBO}) cos(\omega_{CBO} t + \phi_A)]$$

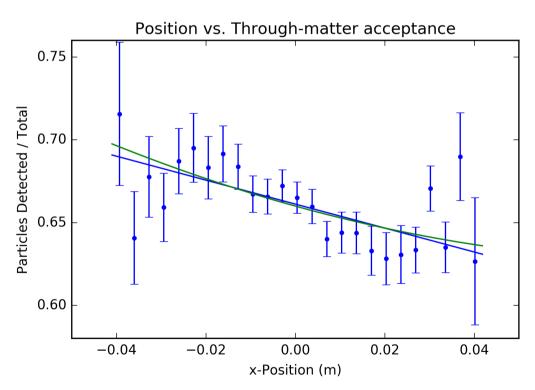
$$\phi \rightarrow \phi + A_{\phi} \exp(-t/\tau_{CBO}) \cos(\omega_{CBO} t + \phi_{\phi})$$

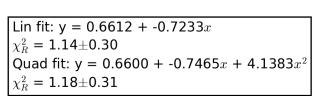
Expanding the part in brackets inside the blue box gives us

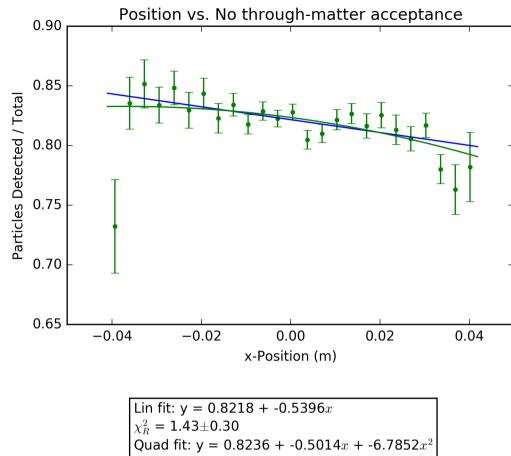
$$A_N(t) = A_0 + A_1 \bar{x} + A_2 (\bar{x}^2 + 0.05\sigma^2)$$

$$A_{N}(t) = A_{0} + A_{1}\bar{x} + A_{2}(\bar{x}_{CBO}^{2} + 0.05\sigma_{CBO}^{2})$$

Using the linear and quadratic fit constants in $A_{N}(t)$ and setting


$$\sigma$$
 = 2.9mm and \bar{x} = 0.45mm (doc-db 4363)


we get the following quadratic influence:


Through Matter			Not Through Matter		
Linear Fit	Quadratic Fit	Quadratic Influence	Linear Fit	Quadratic Fit	Quadratic Influence
0.609	0.660	7.7%	0.822	0.823	0.22%

Take-away: For positrons that do not pass through any matter, the acceptance is linearly dependent on the muon x-position.

For positrons that do pass through matter, the acceptance has some non-negligible influence. ART-Geant is needed.


```
\chi^2_R = 1.44 {\pm} 0.31
```

Future Work

$$N_0 \rightarrow N_0 [1 + A_N \exp(-t/\tau_{CBO}) \cos(\omega_{CBO} t + \phi_N)]$$

$$A \rightarrow A \left[1 + A_{A} \exp(-t/\tau_{CBO}) \cos(\omega_{CBO} t + \phi_{A})\right]$$

$$\phi \rightarrow \phi + A_{\phi} \exp(-t/\tau_{CBO}) \cos(\omega_{CBO} t + \phi_{\phi})$$

$$\phi \rightarrow \phi + A_{\phi} \exp(-t/\tau_{CBO}) \cos(\omega_{CBO} t + \phi_{\phi})$$

Find the quadratic influence in the asymmetry and phase offset.